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ABSTRACT: The Adam language is an extension of Ada that supports

multiway activities, which are cooperative activities involving two or more

processes. This support is provided by three new constructs: diva proce-

dures, meet statements, and multiway accept statements. Diva procedures

are recursive generic procedures having a particular restrictive syntax that
facilitates translation for parallel computers. Meet statements and multi-

way accept statements provide two ways to express a multiway rendezvous,
which is an n-way rendezvous generalizing Ada's 2-way rendezvous. While

meet statements tend to have simpler rules than multiway accept state-

ments, the latter approach is a more straightforward extension of Ada.

The only nonnull statements permitted within meet statements and mul-

tiway accept statements are calls on instantiated diva procedures. A call
on an instantiated diva procedure is also permitted outside a multiway

rendezvous; thus sequential Adam programs using diva procedures can be

written. Adam programs are translated into Ada programs appropriate for

use on parallel computers.
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Chapter 1

Overview

After a brief motivation and a general description of Adam, this chapter
describes three kinds of applications for which Adam is more suitable than

Ada. The chapter also gives simple examples of Adam programs to illus-

trate the new language concepts, describes the target computers supported

by the prototype translator, and discusses the relationship between Adam
and Ada.

1.1 Motivation for Adam

Managers within large companies specify projects at a high-level, more
in terms of what should be accomplished than in terms of precisely how

everyone involved should do all necessary actions to accomplish the project.

Assistants then refine any necessary details. Imagine what it would be like

to manage thousands of employees for a company whose policy requires

managers -- without assistance -- to describe projects directly in terms
of the interactions between all pairs of workers on the project. Absurd

as it may seem, Ada programmers must abide by a similar policy, since

parallel communication in Ada must be expressed at the level of the two-way
rendezvous. Even in the common situation where each worker is asked to

execute the same code -- the Single Program Multiple Data programming

model -- deciding who does what when can swamp the programmer with
low-level detail.

The Adam language permits programmers to express algorithms either

at a high-level of machine-independent parallelism involving cooperative,
multiway activities, or at an even higher level in which multiway activities

are completely implicit. The Adam translator then produces a semanti-



callyequivalent Ada program, with the required activities automatically

converted down to the much lower level of two-way rendezvous. The name

"Adam" derives from Ada plus support for multiway activities.

Effective computing requires adequate support from both hardware and

software. The hardware support for high-speed computing is expected to

be increasingly in the form of heterogeneous computing systems[22], sys-
tems that provide access to a variety of supercomputers and to workstation

clusters. The lack of adequate software support for parallel computers has

been termed the "parallel software crisis" [23]. In the long-run, ideal system
software for heterogeneous computing systems should be capable of auto-

matically shipping a program or program module to the most appropriate

resource in the system for processing. The Adam language is a step in this

direction. As explained later in the chapter, the prototype Adam trans-

lator generates three different kinds of target code, and for each of three

different kinds of parallel computers there exist Adam programs for which
the target code would achieve some form of asymptotically optimal perfor-

mance. Moreover, the characteristics of these Adam programs that make

them appropriate for a particular kind of parallel computer are typically

known prior to run-time, assuming the desired number of processes and the
length of certain vectors is known prior to run time.

1.2 General Description of Adam

Except for trivial restrictions on identifiers, Adam is an extension of Ada

[26]. Thus all applications supported in Ada are also supported in Adam.

In addition, Adam supports data parallel applications more conveniently

than Ada, especially applications involving the kind of cooperative work
described in this chapter.

Two related kinds of cooperative multiway activities are supported by

Adam: the diva call and the multiway rendezvous.

The dlva call is a call on a high-level generic procedure that has
a particular restrictive syntax, employs no explicit parallelism, uses

recursion in a significant way, and whose correctness can be proven

using strong induction. The name "diva" derives from the divide-

and-conquer mechanism used by such calls. A diva call is useful for
such applications as assigning values to the components of vectors and

summarizing information concerning one or more vectors having the
same length. Diva calls can be placed in an Adam program anywhere

a procedure call is permitted in Ada, after the instantiation of its

generic procedure.



Themultiway rendezvous generalizes the Ada two-way rendezvous

by specifying that two or more tasks are synchronized during the ex-

ecution of a (possibly empty) block of code. The simplest way to

express a multiway rendezvous in Adam is using a meet statement

in the task body of an array of tasks. When all members of the
array reach the meet statement, the block of code is executed, af-

ter which the members resume their independent execution. Local

variables of the participating tasks can be accessed within the meet

statement, so a meet statement can resemble a meeting of the par-

ticipating tasks. While the meet statement is sufficient for writing

a multiway rendezvous, the Adam language also provides a second

way to express a multiway rendezvous, the multlway accept, which

is a straightforward generalization of the Ada accept. The multiway

accept historically preceded the meet statement and has supported

programming experiments comparing the two alternate approaches.

The diva call and the multiway rendezvous are integrated within the Adam

language: diva calls are the only non-null statements that can be nested

within the two Adam constructs supporting the multiway rendezvous. The

block of code within a multiway rendezvous describes work to be performed

during the multiway rendezvous and, since the tasks participating in the

multiway rendezvous are synchronized during this work, this work is per-

formed -- logically speaking -- by one or more additional agents. Of course,

an implementation is permitted to implement this work in any way consis-
tent with the semantics. Thus, whenever feasible, this work is performed

by the same processes executing the tasks participating in the multiway

rendezvous, so the work is performed cooperatively.

The multiway rendezvous, introduced in 198315], is a generalization of

the Ada rendezvous [26] and also of the rendezvous in several other well-
known concurrent languages such as CSP [16], DP [4], and SR [2]. It has

been shown that none of the parallel languages supporting the concept of

a rendezvous also provides adequate support for the multiway rendezvous

[6]. The multiway rendezvous can be viewed as an extension of a barrier[14]

that supports cooperative multiway activities.

The Adam language demonstrates the level of support for data paral-

lelism provided by just two constructs: the diva procedure and the meet

statement. Guy Steele, Jr. [25] lists several criteria a language should sat-

isfy to adequately support data parallel programming, including the abil-

ity to express the following: elementwise addition, conditional operators,

broadcast, reduction, parallel prefix, and permutation. Using diva proce-
dures and meet statements satisfies all these criteria, for vectors.

Of course, vectors support a large class of important applications. They



canmodelsuccessive values of sensors over a fixed time interval, where the

resulting data can be scientific (such as the temperature of a valve in a

spacecraft), social (such as population), or commercial (such as stock mar-

ket statistics). Additional one-dimensional phenomena include computer
programs, DNA, natural language texts, and manuscripts of music. For

some applications, diva procedures can be used with more general data

structures. For instance, a diva procedure can be written to copy one two-
dimensional array into another, by treating a two-dimensional array as a

vector of vectors. But when a diva procedure is used to operate on a two-

dimensional array either the rows will be treated independently of each

other or the columns will be treated independently of each other, so full

two-dimensional information is not being considered.

Creating a useful parallel programming concept is a balancing act among
four primary goals:

• providing a level of abstraction with simple rules,

• supporting portability across parallel computers,

• providing sufficient expressibility for useful applications, and

• restricting the programmer to expressing high-level algorithms that

permit generation of efficient code.

Some programming concepts, such as GAMMA [3], provide more express-

ibility than diva procedures. Some special-purpose programming concepts,

such as primitives that satisfy single items in Steele's list, might be easier
to translate into efficient parallel code than diva calls. Diva calls form a

compromise between these two extremes, while providing a portable level
of abstraction having simple rules.

Although expressed in an extension of Ada, the multiway activities rep-

resented by the diva procedure and the meet statement are presented as

programming language concepts rather than just as constructs in a partic-

ular language. These concepts can be adapted for use in a wide variety of

languages, just as the multiway branch concept -- inspired by Hoare's case

statement -- has been widely adapted.

The important issue of how to provide the illusion of shared memory on

a distributed memory architecture has been left to other researchers [21].
The Adam language design effort has focused on orthogonal issues.

The following sections describe applications conveniently supported in
the Adam language. In addition to these applications, a diva call can be

used to assign values to a vector, possibly using a computation based on

corresponding values of vectors.



Forsimplicity,allcomplexityresultsin thisreportfor callsondivapro-
ceduresassumethatthecomputationwithinasingleactivationofthepro-
ceduretakesconstanttimeandthat parameterpassingfor anyparameter
otherthanthevectorsoperateduponbya divacall (i.e.,for anynondy-

namic parameter, as defined in Chapter 2) takes constant time. These
conditions are met by all applications described.

1.3 Generalized Reductions

I, anguages supporting data parallel programming provide convenient ways

to perform reductions; i.e., certain single computations across all com-

ponents of a vector, such as finding the sum or product or maximum or
minimum of the component values. In addition, several such languages also

permit the programmer to use any function in a reduction, as long as the

function satisfies certain properties. All such languages require the function
to be associative and some also require the function to be commutative.

Any computation that can be performed using a reduction based on a

programmer-defined function can be also be performed using a diva call.

In addition, diva calls have the following advantages [8]:

The correctness of a diva procedure can be proven in a straightforward

way, using the same kind of strong induction argument naturally used

in verifying a recursive procedure.

Proving the associativity of a function can be very difficult, yet such

a proof is essential for nontrivial programmer-defined functions. A

separate proof of associativity is not required for diva procedures.

Diva procedures are provably more general than reduction functions:

there exists a diva procedure whose corresponding combining function
is not associative3

The semantics of a diva procedure are natural and easy for the pro-

grammer to understand. The programmer has a simple sequential

conceptual model for understanding these semantics: the model is
based on the concepts of recursion and the nondeterministic divide.

The latter delegates the choice of a division point in a vector used for

recursive calls to the underlying implementation.

Independent of and complementary to the development of the nondeter-

ministic divide are approaches that let the programmer specify an algorithm

1This follows from Example 2 of [9].



for selecting the division point in a vector [20]. The Adam language demon-

strates what can be accomplished without specifying such an algorithm.

Diva calls can be used to perform a variety of computations on the

sequences of values of vectors, such as:

• computing the number of peaks in a sequence, where a "peak" is a
term that is greater than both its predecessor and successor,

computing the position of the first term of a sequence of positive

integers that is greater than a given value (or returning -1 if there is
no such term),

computing the maximum sum among the nonempty slices of a se-

quence of positive and negative integers, where a "slice" is a contigu-
ous subsequence,

• computing the number of runs in a sequence, where a "run" is a slice
whose values are increasing,

• computing the length of the longest plateau of a nondecreasing se-

quence, where a "plateau" is a slice of equal values,

• computing the length of the longest ascending slice of a sequence,

• computing the value of a term of one sequence corresponding to the
maximum of another sequence,

• computing the length of the longest identical corresponding slice of
two sequences,

• computing the length of the longest ascending slice of a sequence such

that the corresponding terms of another sequence are also ascending,

• computing the largest increase among the pairs of adjacent terms of

a sequence,

• computing the largest increase from one term of a sequence to a later

term of the sequence, where the location of the first such term is an

in parameter of the diva procedure,

• computing the largest increase from one term of a sequence to a later

term of the sequence (and the two locations where such an increase
first occurs), where the first such term varies over all terms of the

sequence,



• computingthefirstrecord, in a sequence of records, whose fields have
the most number of matches with the corresponding fields of a key, 2

and

• computing the length of the longest slice of one sequence whose terms

are greater than the corresponding terms of another sequence (and
the location where a slice of this length first occurs).

The final application can be used to compare the readings of two sensors

over time, analogous to computing the longest winning streak of one sports

team over another. Quicksort is an example of a divide-and-conquer strat-

egy that does not have a straightforward treatment using diva procedures,
since the division of a vector by quicksort occurs only after some initial

processing of the vector.

1.4 Avoiding Certain Iterations

Consider the problem of computing the first location of a component of

an unsorted vector of length n whose value differs the least from a given

component's value, analogous to determining who in a group of n people has

a height nearest a given person's height. This problem can be solved using a

diva call, so it belongs to the class described in the preceding section. Now

suppose the given component value is to vary over all the component values,

analogous to asking everyone in the group of people to determine whose

height is closest to their own. Such an application can be programmed by
iteration, using a loop containing a diva call of the kind. described in the

preceding section, so that a total of n diva calls are made.
But there is a simpler programming approach than such iteration, an

approach that also provides guidance to the translator: place a diva call
inside a meet statement and let the actual parameter corresponding to

the given component value have a different value for different members of

the array of tasks.J10] An Adam language rule assures us that such use

of a diva procedure is just as easy to understand as a use of the same

diva procedure in which different members of the array of tasks use the
same actual parameter value, even though the net effect can be much more

powerful. In addition, the target Ada produced by the Adam translator
for a ring of n processors permits the n 2 computations to be performed in

time proportional to n, which is optimal.

Many applications described in the preceding section can be parameter-
ized this way. For example, for each term of a nondecreasing sequence one

2This application was suggested by Dana Richards of the U. of Virginia.



couldcomputethe length of the longest plateau containing the given term.

Here are additional examples:

• for each component in a vector, find the location of the first compo-

nent to the right that has a greater value, if there is such a location. 3

• sorting an array,

• performing a parallel prefix calculation,

• calculating the three accelerations on each of n astronomical bodies
due to the masses and locations of the other bodies,

• letting each member of an array of n tasks send a different value to
some other task in the array, and

• given a set of data, calculating which single piece of data, if omit-

ted from the set, would cause the resulting variance to become the
smallest. 4

The first "three of these additional examples, together with the example

involving plateau lengths, are illustrated in Appendix A.

1.5 Loosely Synchronous Applications

When the term multiway rendezvous was introduced [5], its usefulness

for a particular class of algorithms was illustrated. The algorithms in this

class proceed by iterating stages, where part of the work of each stage is

distributed among several processes, and where the only synchronization

and communication is for sharing results among all these processes once
during each stage (or, in general, a fixed number of times during each

stage).

Loosely synchronous algorithms -- a term used by Geoffrey Fox [13]

-- include the algorithms in this class. An example of such an algorithm is

the straightforward parallel algorithm for solving the n body problem. The
n body problem is that of finding the positions of n astronomical bodies at

the end of a given time interval, given their initial positions, velocities, and

masses, and assuming the only accelerations will be those due to mutual

3This problem was posed to us by David Nicol of the Institute for Computer Applica-

tious in Science and Engineering (ICASE) at NASA Langley Research Center, who had

earlier needed to perform the calculation.

4This problem was posed to us by J. Van Bowen of the U. of Richmond, whose

statistics Ph,D. dissertation includes a study of the variance of a set of data when one

piece of data is omitted.



gravitational attraction. The straightforward parallel algorithm iterates
over subintervals of the desired time interval and associates a process with

each of the n bodies. Process i computes the new location of body i during

each subinterval, using the locations and masses of all other bodies.

A few other examples of such algorithms, given in [5], include:

• The parallel farthest-insertion heuristic for the Euclidean traveling

salesman problem [24].

• The parallel Floyd algorithm for finding the shortest distance between

each pair of nodes in a network [11], given the length of each edge in
the network.

• Parallel Jacobi iteration [19].

• The parallel Prim-Dijkstra algorithm for finding the minimum span-

ning tree of a network [12].

One approach to implementing such algorithms is to activate and deacti-

vate processes before and after each stage. Another approach is to activate
each process just once and to let the processes engage in a multiway ren-

dezvous at each stage [6]. Advantages to the latter approach are:

• The number of process activations and terminations are greatly re-

duced; such operations can require significant amounts of processor
time.

• Local variables are kept alive, resulting in less need for nonlocal vari-

able accessing.

• With adequate support, such as that provided by the Adam language,

the programmer can think at a higher conceptual level, leading to

programs that are easier to write, read, debug, modify, test, and

verify.

1.6 Examples of Adam Programs

This section gives simple examples of Adam programs to illustrate the key

concepts, as well as a brief illustration of how these programs can be used.
As Nicklaus Wirth has observed:

A successful language must grow out of clear ideas of design

goals and of simultaneous attempts to define it in terms of ab-
stract structures, and to implement it on a computer, or prefer-

ably even on several computers.[27]



Thedesignof the Adam language reflects insights gained from simultane-

ously developing a translator for the language. The central purpose of the

Adam translator has been to facilitate such insights. Thus the translator

is basic research: a prototype rather than a production quality translator.

The first example given to illustrate a programming language tradition-

ally involves one of the standard problems in computer science, such as

computing a factorial, since to present a practical program initially would
swamp the reader with details of a particular technical problem. Here is a

VAX/VMS 5 terminal session that illustrates the use of the Adam translator

in computing 5 factorial:

$ ADAH/HACHINEfLOOP_CUBE FACT_

$ ADA FACT_

$ACS LINK FACT

Y,ACS-I-CL_LINKING, Invoking the VAX/VMS Linker
$ TYPE FACT.DAT1

88
8

$ ASSIGN FACT.DAT1 ADA$INPUT
$ RUN FACT

120.0

The first command translates the file FACT_. ADAN,containing the Adam

procedure FACT, into the equivalent Ada file FACT_. ADA, containing the Ada

procedure FACT. The rest of the session uses the VMS Ada environment:
FACT_. hI)h is compiled and the result is linked, yielding FACT. EXE, which

is run, producing the output.

The Adam translator can translate an Adam program into code for

three different kinds of target machines: IPSC2, L00P_CUBE, and RING. The

user indicates the desired target machine by using the appropriate qualifier

in the ADAM command. An explanation of these three target machines

appears later in the chapter. The above example illustrates the form of

data required for an Adam program. Preceding any data to be read by

the Adam program must be two integers; these indicate the minimum and

maximum number of processes desired in implementing a diva call. [For
diva calls outside a multiway rendezvous, these data values are used to

determine the number of nodes activated in the IPSC2 implementation and

the number of tasks activated in the LOOP_CUBE implementation.]

The program FACT_.ADAN can be written at least three ways: using
a high-level diva call outside a multiway rendezvous and using either the

meet statement or the multiway accept statement form of the multiway

sVAX and VMS are trademarks of Digital Equipment Corporation.
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rendezvous. We now provide listings of these three programs. All three can

be translated so the factorial is computed in parallel. The first program is

the only one to use the third 5 in the sample data file, since it is the only one

of the three Adam programs that explicitly reads any input. To illustrate

how tasks participating in a multiway rendezvous can receive the common

answer from a diva call, in the second and third versions of FACT_.ADAM

presented here, these tasks print out their copy of the answer, resulting in

five copies of 120.0 in the output. Altering the program to produce a single

copy of the output is simple: the output statement would be embedded in

an if statement that tests whether MY_I equals 1.

The following diva procedure is used in all three programs:

generic

type RANGE_TYPE is range <>;

type DYNAMIC_VECTOR is array(RANGE_TYPE) of FLOAT;

diva procedure FIND_PRODUCT (A: in DYNAMIC_VECTOR; PROD: out FLOAT) is

-- Assign to PROD the * reduction of A

INITIAL_PROD, FINAL_PROD: FLOAT;

begin -- FIND_PRODUCT
if A'LENGTH ffiI then

PROD := A(A'FIRST);

else

FIND_PRODUCT (A'INITIAL, INITIAL_PROD);

FIND_PRODUCT (A'FINAL, FINAL_PROD) ;

PROD := INITIAL_PROD * FINAL_PROD;

end if ;

end FIND_PRODUCT ;

The Adam extensions to Ada used in the firstversion of FACT_.ADAM

are a generic diva procedure, a diva procedure instantiation, and a callon

an instantiated diva procedure.

with FLOAT_TEXT_I0; use FLOAT_TEXT_IO;

procedure FACT is

N: INTEGER;

-- Place the declaration of diva procedure FIND_PRODUCThere

begin -- FACT

GET (N);

declare

subtype SUBRANGE is INTEGER range 1..N;

type VECTOR is array(SUBRANGE) of FLOAT;

diva procedure USE_PRODUCT is nee FIND_PRODUCT (SUBRANGE, VECTOR);

II



X: VECTOR;

ANSWER: FLOAT;

begin

for I in SUBRANGE loop

GET (X(I)) ;

end loop ;

USE_PRODUCT (X, ANSWER) ;

PUT (ANSWER, 10, 1, 0); k_W_LINE;

end;

end FACT;

The Adam extensions to Ada used in the second version of FACT_. ADAM

include a generic diva procedure, a diva procedure instantiation within the

private part of a task type specification, and a task index declaration. The

program also includes a meet statement containing a call on an instantiated
diva procedure that uses hyphen notation to create a virtual vector using

a local variable of the task type for the array of tasks.

with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;

procedure FACT is

PROD: FLOAT;

N: constant INTEGER := 5;

subtype SUBRANGE is INTEGER range 1..N;

type VECTOR is array(SUBRANGE) of FLOAT;

-- Place the declaration of diva procedure FIND_PRODUCT here.

procedure PERFORN_CONPUTATION is

task type W0RKER_TYPE is

private

diva procedure USE_PRODUCT is new FIND_PRODUCT (SUBRANGE, VECTOR);

end WORKER_TYPE;

WORKER: array[MY_I: SUBRANGE] of WORKER_TYPE;

task body WORKER_TYPE is

MY_VALUE: FLOAT:= FLOAT(MY_I);

MY_RESULT: FLOAT;

begin -- W0RKER_TYPE

meet

USE_PRODUCT (W0RKER[-J.MY_VALUE, MY_RESULT);

end meet;

PUT (NY_RESULT, 10, 1, 0);

end NORKER_TYPE;

12



begin -- PERFORM_COMPUTATION

null; -- Activate the array of workers.

end PERFORM_COMPUTATION ;

begin -- FACT

PERFORM_COMPUTATION;

end FACT;

The Adam extensions to Ada used in the final version of FACT_.ADAM

include a generic diva procedure, a multiway accept entry declaration, a

diva procedure instantiation within the private part of a task specification, a

task index declaration, and a multiway accept entry call. The program also

includes a multiway accept statement containing a call on an instantiated

diva procedure that uses hyphen notation to create a virtual vector using

a formal parameter of the multiway accept.

with FLOAT_TEXT_I0; use FLOAT_TEXT_I0;

procedure FACT is

N: constant INTEGER :- 5;

subtype SUBRANGE is INTEGER range I..N;

type VECTOR is array(SUBRANGE) of FLOAT;

-- Place the declaration of diva procedure FIND_PRODUCT here.

task PARENT is

entry P[MY_I: SUBRANGE] (X: in FLOAT; RESULT: out FLOAT);

private
diva procedure USE_PRODUCT is new FIND_PRODUCT (SUBRANGE, VECTOR);

end PARENT;

task body PARENT is
PROD: FLOAT;

task type CHILD_TYPE;

CHILD: array[MY_I: SUBRANGE] of CHILD_TYPE;

task body CHILD_TYPE is

MY_RESULT: FLOAT;

MY_VALUE: FLOAT :m FLOAT(MY_I);

begin -- CHILD_TYPE
PARENT.P[MY_I] (MY_VALUE, MY_RESULT);

end CHILD_TYPE;

begin -- PARENT

accept P[MY_I: SUBRANGE] (X: in FLOAT; RESULT: out FLOAT) do

USE_PRODUCT (P [-] .X0 PROD) ;

end P;

PUT (PROD, I0, I, 0);

13



end PAREMT;

besin-- FACT

null; -- Activate the PARENT task and thereby the array of CHILD tasks.
end FACT;

1.7 Available Target Codes

Throughout this section, a multiway rendezvous means a meet statement

or multiway accept statement, p and n denote positive integers such that

p is the number of processes used in implementing a diva call, and n is the

length of the vectors used in a diva call. To ensure sensible use of processes,

n >= p must hold for each diva call; otherwise a run-time exception is
raised. The value of p is determined by the data used with the Adam
program, which be$ins with the minimum and maximum desired values for

p. The programmer decides how the value of n is determined, whether by

the data or by a constant or computation within the program.
An Adam program can be translated into one of three kinds of Ada

code, targeted for three kinds of parallel computers, with the choice made

by a compile-time directive. For input data satisfying the requirements

given in the next paragraph, the choice of target computer does not affect

the logical behavior of the program, it only affects performance, such as
efficiency and speed of execution.

Here is a brief description of the three kinds of target Ada code:

The IPSC2 target code for the Intel iPSC/2 hypercube, for

which p must be a power of 2. Adam programs most appropriate
for the IPSC2 are those in which a diva call only appears outside a

multiway rendezvous. The combining work required for such calls is

performed in log time on the iPSC/2, which is optimal (to within a
constant factor). In the target Ada this combining work is performed

by calls on the iPSC/2 gopf system function; thus the programmer

has the benefits of both the high-level of abstraction provided by diva

procedures and an efficient implementation in terms of the gopf call.

The L00P_CUBE target code for any parallel computer having

an Ada compiler, such that the computer permits hyper-
cube interconnections between nodes, places different mem-

bers of an array of tasks on different nodes when there are

sufficiently many nodes, and simultaneously executes Ada

rendezvous between pairs of such node programs whenever

logically possible. There are no additional requirements on
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p and n. Adam programs most appropriate for the L00P_CUBE are
those for which each diva call within a meet statement involves the

same nondynamic (defined at the beginning of the next chapter) in
values and the Adam program contains a pragma asserting this fact.

Given p processors, the combining work required for any diva call in

such a program is performed in log time, which is optimal (to within

a constant factor).

• The RING target code for any parallel computer having an

Ada compiler, such that the computer permits bidirectional

ring interconnections between nodes, places different mem-

bers of an array of tasks on different nodes when there are

sufficiently many nodes, and simultaneously executes Ads
rendezvous between pairs of such node programs whenever

logically possible. The value of p must be even and p = n
must hold for any diva call within a meet statement. Adam

programs most appropriate for the RING are those in which a diva

call occurs only within a meet statement and for which each diva
call within a meet statement involves different nondynamic in values,

since (given p processors) such calls will be executed in linear time,

which is optimal efficiency (to within a constant factor).

The rest of this section provides additional details about these target
parallel computers. The IPSC2 target code consists of both a host and a
node Ads procedure. The host Ada procedure obtains the largest subcube
of the iPSC/2 within the size bounds specified by the data. If the minimum
number of nodes desired is not available, the exception

ADAM_Z_MINIMUM_CUBE_SIZE_UNAVAILABLE

is raised. If n < p, the exception

ADAM_Z_DYNAMIC_VECTOR_LENGTH_SMALLER_THAN_MINIMUM_CUBE_SIZE

is raised. The user can then resubmit the target code (without changing

it), and if the latter exception has been raised, the user will want to re-
consider the appropriate level of parallelism specified in the data. For any

diva call outside a multiway rendezvous, the host procedure ships the node

procedure to each node of the subcube so the work of such a diva call is

performed in parallel, with the result returning to the host. If n = p, the
nodes combine their individual values. If n > p, the nodes independently

perform some of the work of the diva call, working on (within one of) the

same number of components of each vector used in the diva call, before

combining their partial results. Since the iPSC/2 Ada compiler does not
translate an Ada rendezvous into internode communication, any use of a

15



multiwayrendezvousis performed solely by the host program so there is

no performance benefit for a diva call within a multiway rendezvous.

Although the L00P_CUBE and RING target Ada codes can be compiled

and executed on any computer having an Ada compiler, they are designed

for parallel computers that should become available at some future date.

Currently the author knows of no parallel computer having an Ada com-

piler that implements an Ada rendezvous as interprocessor communication
so that large numbers of rendezvous can be executed simultaneously when

this would be consistent with Ada semantics. Anticipating the ultimate

availability of such a computer, the LOOP_CUBE and RIIIG target codes in-

corporate restrictions on which members of a single-dimensional array W

of tasks can call which other members, thereby simplifying the problem

of mapping processes to processors, a problem an Ada system for such a

computer would need to solve.

For the LOOP_CUBE, Adam code for a diva call and for a multiway ren-
dezvous is translated into target Ada that only permits W[i] to rendezvous

with W[j] if the binary codes for i and j differ in a single bit position,

viewing the range of W as going from 0 to p - 1. [But Adam places no ar-

bitrary restriction on the programmer's choice of the range of W.] If n > p,

a diva call outside a multiway rendezvous is translated into Ada that uses

loops to perform independent work within each task prior to the intertask
communication for the call, so that in the case when p = 1, such a diva

call is executed as an Ada loop. The rest of this paragraph assumes the

kind of parallel computer described in the preceding paragraph. For the

applications described in Section 1.3, the target Ada performs the work of a

diva call within a meet statement in time proportional to n/p+ log(p). For
the applications described in Section 1.4, the target Ada performs the work

of a diva call within a meet statement in time proportional to n + plug(p);

when n = p these applications are better suited for translation to a ring.

For the RIliG, Adam code for a diva call within a meet statement is

translated into target Ada that only permits W[i] to rendezvous with W[j]

if i and j differ by 1 modulo p, viewing the range of W as going from 0 to

p- 1. Such a diva call is implemented so that, when the target code is

executed on a suitable ring of processors, the number of rendezvous time

steps required is p/2, where a rendezvous time step is the time required for

executing a single Ada entry call (or several entry calls that can be executed

simultaneously), and where the tim_ for executing statements other than
entry calls is ignored. 6 The target Ada performs the work of a diva call

within a meet statement in time proportional to p (= n), on a suitable ring

6Scott Shauf, now at the U. of North Carolina at Chapel Hill, reduced the number of

time steps from p to p/2.
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of processors,asdescribedabove,for theapplicationsdescribedin both
Section1.3and1.4.Forthelatterclassofapplications,thisisoptimal,since
p2 computations are required for the given algorithms. For the applications
in Section 1.3, the programmer should provide a pragma to ensure the target

Ada achieves a smaller constant of proportionality; the pragma is explained
in Section 3.2.

1.8 Relationship Between Adam and Ada

The Ada language has been criticized for being too elaborate [17]. Thus

one should be very cautious in proposing an extension to Ada, especially if
the extended features can interact with existing features of Ada to produce

programs that are difficult to understand. The purpose of Adam is to

,lake programs easier, rather than more difficult, to understand. Thus
restrictions are placed on the types of interactions that can occur between
the new and old features. For example, the multiway accept cannot be

used to select options in an Ada select statement and calls on multiway

accept entries cannot be used to select options in an Ada select statement.

The Adam language, with these restrictions, fully supports the applications

described in this report.
Adam is a superset of Ada and thus the syntax and semantics of all

Ada reserved words, comments, statement forms, etc., are preserved by

the Adam translator. The only restrictions on the pure Ada used by an

Adam programmer are the addition of the reserved words diva and meet
and the fact that a user-defined identifier cannot have the prefix ADAM_Z

and cannot have length greater than 40. The translator uses ADA_I_Z as

a prefix for identifiers inserted into the translated Ada form of the Adam
program. Since the Ada programs generated by the Adam translator have

comments beginning with --*** to explain the role of the Ada that has

replaced extensions of Ada, the Adam programmer might wish to avoid

using comments beginning with these characters so that the new comments

are easier for a programmer to notice. Of course, there may be no need for

a programmer to read an Ada program generated by the Adam translator.
Since the introduction of Adam in 1987, the language has supported

the automatic assignment of indexes to an array of tasks. Similar, but

different, support will be provided in the next version of Ada ([1], 2.4.2.1).

Tile approach used in Adam is illustrated below:

task type WORKER_TYPE;

WORKER: array[l: SUBSCRIPT_RANGE] of WORKER_TYPE;

task body WORKER_TYPE is
-- the value of I can be used in these declarations
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*0,

begin

-- the value of I can be used here

4.,

end WORKER_TYPE;

The base type of such an indexed array must be a task type.
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Chapter 2

Rules for Diva

Procedures

This chapter presents the rules for declaring and instantiating diva proce-

dures, which can be called from either outside or inside a multiway ren-
dezvous. Rules for diva calls inside a multiway rendezvous are presented

in Chapters 3 and 4 and rationales for the Adam constructs are given in

Chapter 5.

The formal syntax for a generic diva procedure will be given shortly;

roughly speaking, it is a recursive procedure having a restrictive syntax
that facilitates translation for parallel computers. A call on an instantiated

diva procedure operates on one or more vectors having the same length.

The formal parameters corresponding to these vectors are called dynamic

parameters, since the recursive calls of the diva procedure use values of
such parameters having progressively shorter lengths. The remaining items

in the diva procedure formal parameter list are called nondynamic param-

eters. The operation performed by the diva call can either assign a value

to one or more nondynamic parameters, assign values to the components

of one or more dynamic parameters, or both. For instance, the diva proce-
dure FIND_PRODUCT of Section 1.6 assigns a value to one nondynamic

parameter, the diva procedure FIND_LOC of Section 5.1 assigns values to

two nondynamic parameters, and the diva procedure UPDATE at the end

of Appendix A assigns values to the components of two dynamic parame-
ters.

The formal syntax of a generic diva procedure P is indicated in figures
2.1 and 2.2. The notation { ]" denotes zero or one of the enclosed items,

}* denotes zero or one or more of the enclosed items, and _ }+ denotes
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generic_diva_procedure_declaration

: :- GENERIC

TYPE range_type_mark IS RANGE < > ;

( TYPE type_mark IS ARRAY ( range_type_mark ) OF typemark ; }+

DIVA PROCEDURE generic_diva_procedure_name

( dynamic_parameter_declaration { ; dynamic_parameter_declaration }*

{ ; non_dynamic_declarations } ) IS

{ pure_ada_codel }

BEGIN

IF dynamic_parameter_name _ LENGTH- !

THEN

{ pure_ada_code2 }

ELSE

generic_diva_procedure_name

( dynamic_parameter_name ' INITIAL

{ , dynamic_parameter_name ' INITIAL }*

{ , <identifier> }* ) ;

generic _diva_pro cedur e_name

( dynamic_parameter_name ' FINAL

{ , dynamic_parameter_name ' FINAL }*

{ , <identifier> }* ) ;

{ pure_aria_code3 }

END IF ;

{ RETURN ; }

END generic_diva_procedure_name ;

Figure 2.1: Syntax for Generic Diva Procedure Declaration.

one or more of the enclosed items. An alternative is denoted by I • Each of

the following nonterminals produce an identifier: generic_diva_procedure_name,

range_type_mark, type.mark, and dynamic_parameter_name. All instances
of range_type.mark within P must produce the same identifier. All in-

stances of generic_diva_procedure_name within the diva procedure P must
produce the identifier P.

Nonterminals with the prefix pure_ada_code have the following addi-

tional static semantic restrictions. The declaration block pure_ada_codel
and the block pure_ada_code_3 cannot access a dynamic parameter. The

only attribute of a dynamic parameter that can be accessed within the
block pure_ada_code2 is the attribute FIRST and the use of this attribute

is the only way a component value of a dynamic parameter can be accessed

within the block. Access to nonlocals from within P is prohibited; thus
objects used within P, including subprograms, must be declared within P.
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dynamic_par amet er_declarat ion

::= dynamic_parameter_name { , dynamic_parameter_name }* : mode type_mark

mode

: := IN l OUT l IN OUT

nondynamic_declarations

: := in_parameter_declaration

{ ; in_parameter_declaration }*

out_or_ in out _par amet er_de¢larat ion

{ ; out_or_in_out_parameter_declaration }*

in_parameter_declaration

{ ; in_parameter_declaration }*

; out_or _ in_out_paramet er_declarat ion

{ ; out_or_in_out_parameter_declaration },

in_parameter_declaration

:: - identifier_list : IN type_mark

identifier_list : IN range_type_mark

out _or _ in_ out_paramet er_de c larat ion

::= identifier_list : OUT type_mark [

identifier_list : OUT range_type_mark I

identifier_list : IN OUT type_mark l

identifier_list : IN OUT range_type_mark

ident if ier_list

::= <identifier> { , <identifier> }$

Figure 2.2: Syntax for Diva Procedure Formal Parameters.

The following objects cannot be declared within P: tasks, diva procedures,
and diva instantiations. Two new attributes, INITIAL and FINAL, are

defined by the implementation for each dynamic formal parameter in an

activation of a diva procedure, access to these attributes is only permit-
ted inside the two recursive calls on the generic diva procedure, and the

attributes satisfy the three conditions in Figure 2.3, where A1, ..., Am are

the dynamic parameters.

Since the syntax rules don't let the programmer specify the division

point used for dividing a dynamic parameter A into A'INITIAL and

A'FINAL, the implementation chooses the division point. This key con-

cept of diva procedures is known as the nondeterministic divide. For
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1. Ai equals AI'INITIAL concatenated with Ai'FINAL.

2. Both Ai'INITIAL and Ai'FINAL have nonempty ranges.

3. The range of Ai'INITIAL equals the range of Aj'INITIAL and the

range of Ai'FINAL equals the range of Aj'FINAL.

Figure 2.3: Properties of Attributes INITIAL and FINAL, for each i and
j between 1 and m.

the nonrecursive call, the range of all dynamic parameters is specified by
the first generic actual parameter in the instantiation. For the recursive

calls, the underlying implementation supplies the constrained range, en-
suring that conditions 1 through 3 of Figure 2.3 are satisfied. Condition

3 means the same division point is used for multiple dynamic parameters,

which is consistent with the fact that the syntax for a generic diva procedure

requires all dynamic parameters to have the same range.

As is true for Ada, the specification of a generic diva procedure can be

separate from the declaration of the generic procedure body but the in-

stantiation of the generic procedure cannot precede the declaration of the

generic procedure body. The placement of a generic diva procedure instan-
tiation depends on whether calls are made on the instantiated procedure

outside or inside a multiway rendezvous:

Normal instantiation: Calls on such an instantiated diva proce-
dure are permitted anywhere outside a multiway rendezvous that an

Ada procedure call is permitted. Such an instantiation can be placed

anywhere an Ada basic declarative item is permitted. 1

Private instantiation: Calls on such an instantiated diva proce-
dure are only permitted within a meet statement or multiway accept

statement. The instantiation is placed in a private part of a task (or
task type) T. The declaration of the task is written as follows, for

an instantiation I of a generic diva procedure G, where h3. and h2
correspond to generic parameters:

task T is

... entries are declared here, if there are entries

private

diva procedure I is ne. G(AI, A2);

1See Section 3.9 of [26] for the definition of such an item.
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... additional diva instantiations can be placed here

end T;

The reserved word type can appear between task and T, when ap-

propriate. If the diva call is in a meet statement within the body of

T, then T must be a task type and there must be one and only one

array declared to be of type T. _ If the diva call is in a multiway accept

statement within the body of T, there must be an array of tasks each

component of which makes calls on the multiway accept. Note that in

either case there is an array of tasks that participates in the multiway

rendezvous.

2The syntax of Ada permits only one array to have a particular task type, if members
of the array call other members of the array, since the array name itself must appear in
the body of the task type.
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Chapter 3

Rules for the Meet

Statement

Although a more radical departure from Ada, the meet statement is gen-

erally superior to the multiway accept because the rules are simpler, the
notation is more concise, and yet the same expressive power is provided for

the kinds of applications described in this report. Rationales for the rules

in this chapter are given in Chapter 5.

3.1 Meet Statements

The formal syntax of the meet statement is indicated in Figure 3.1, where
each of the nonterminais diva_instantiation_name, array_name, and sim-

ple_name produces an identifier. Square brackets are not used as metasym-
bols in the formal syntax; they are lexical units within the Adam language.

The meet statement can only appear inside the statement body of a task

type T that is used in declaring a one-dimensional indexed array of worker

tasks, W[1], ..., W[m].
The semantics of the meet statement are as follows: when any one of

W[1], ..., W[m] reaches the meet statement it becomes suspended until all
have reached the meet statement, whereupon the threads of control of W[1],

..., w ira] are combined into a single thread of control during the execution

of the multiway_rendezvous_statements.
Axioms for meet and end meet in the style of ttoare[15] are given in

Figure 3.2 for programs satisfying the following property: if one of the
workers Will, ..., W[m] has write access to a nonlocal memory location

outside meet statements, no other worker has read access to this memory
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meet_statement

::- MEET multieay_rendezvous_statenents END MEET;

nultieay_rendezvous_statenents

::- NULL ; J { diva_call_eithin_multiway_rendezvous }+

diva_call_githin_nultigay_rendezvous

::= diva_instantiation_naue ( actual_parameter_list )

actual_parameter_list

::- { array_name , J sinple_name [-] . simple_name , }+

{ { simple_name , }* simple_name }

Figure 3.1: Syntax for the Meet Statement.

location outside meet statements. This property is easy to satisfy for nearly

all Adam programs solving the problems listed in Chapter 1. In Figure 3.2,

P(i) and Q(0 are predicates with the free variable i. The range of i is the

same as that of the array of tasks and any program variables appearing
in the predicates must be visible from the point in the text of Wl'i'l where

the predicate appears. In addition, if an array X that is nonlocal to the

task type for i/appears within either of these predicates, the only subscript

value that can be used with X in these predicates is i. Section 5.2 discusses

the informal meaning of the two semantic axioms.

3.2 Diva Procedure Calls

A "private" instantiation is required for a diva call within a meet statement,

as explained at the end of Chapter 2.

Let W be an array of tasks with range SUBRANGE whose task type T con-

tains a meet statement. Informally, the meet statement defines a meeting
among the members of W, where the work of WI'i] during the meeting is de-

fined by the diva call within the code for W[i]. Although the code for each

member ofi/is the same, it is possible for such a diva call to involve different

nondynamic in values for different _embers of Wand different nondynamic

out values may be received by different members of W. When either or both

occur, the effect of the diva call on the local variables of W[i] and on lhe
i th component of nonlocal arrays is exactly the same as if all workers had

used the nondynamic in values used by the particular worker W[i] and all

workers had received the nondynamic out values received by the particu-
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Axiomfor meet

•[ P(i) } meet { ViP(i) }

Axiom for end meet ;

V_Q(i) } end meet; (Q(i) }

Figure 3.2: Semantic Axioms. Here curly braces have the usual meaning
for Hoare semantics.

lar worker W[i]. This rule keeps diva procedures relatively easy to write

and understand yet enables them to have a powerful effect. The diva pro-
cedures FIRST_RIGHT_GREATER and FIllD_PLATEAU_LENGTH inAppendix A

illustratethiscombination ofsimplicityand power.

Let X be eitherthe task index or a variabledeclared within T, and let

Y be a nonlocal vectorvisiblefrom the point of the diva call.Both W [-].X

and Y can be used as an actual parameter corresponding to a dynamic

parameter; the former denotes a virtual vector whose range is SUBRANGE
and whose value at the i th component is equal to W[i]'s value of X. Such

hyphen notation may only be used within diva calls. When I is used as an

actual parameter corresponding to a nondynamic parameter, it denotes the

value of X for that particular worker.

Let I be an instantiation of a generic diva procedure G that has non-

dynamic in parameters Xl, ..., lk and suppose calls on I appear inside

meet statements. If the programmer knows that whenever such a call is

executed, all values contributed by the participating tasks for the actual

corresponding to Xl are equal, all values corresponding to X2 are equal, ...,

and all values corresponding to Xk are equal, the following pragma should

be placed after the instantiation of I in the private part containing the
instantiation

pragma SAME_IN_VALUES (I);

If the programmer wishes to indicate that pragma SAME_IllVALUES applies

to all instantiations of G in the program, this can be accomplished using

the single pragma
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prasma SAME_IN_VALUES (G) ;

inserted after the specification or body of G in the same declaration block
as{].

Pragma SAME_IN_VALUES helps the translator generate efficient target

code. The presence or absence of the pragma SANE_IN_VALUES affects only

the performance of the target code, not its semantic correctness. However,
since the effect on performance can be considerable, the presence or absence

of such a pragma is reported during the execution of the ADAM command

whenever the Adam program has a generic diva procedure G having a non-

dynamic in parameter such that some instantiation of G is called from

within a meet statement. The second program in Appendix A illustrates

this pragma.
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Chapter 4

Rules for the Multiway

Accept

Although the multiway accept is a more straightforward extension of Ada
than the meet statement, the rules for the multiway accept are more com-

plex. The rationales for rules in this chapter are given in Chapter 5.

4.1 The Multiway Accept

The syntax for the rnultiway accept statement is indicated in Figure 4.1,

where curly braces and the nonterminals multiway.rendezvous_statements

and mode are explained in Chapter 2 and Figure 3.1. The remaining non-

terminals in Figure 4.1 each produce an identifier. Square brackets are not
used as metasymbols in the formal syntax, since they occur as lexical units
within Adam.

A multiway accept statement can appear only within a task body or

task type body. For a given multiway accept entry_family_name within a

given scope, there must be at most one multiway accept statement, and
if one exists, there must be one and only one array of tasks that make

calls on the multiway accept entry family. Moreover, the multiway ac-

cept statement cannot be contained within the tasks of this array, the dis-

crete_range_type_name for the entry family must be the same as that used

in declaring the array of tasks, and the task index variable must be the

only expression used by a member of the task array in determining which
member of the entry family to call.

For a multiway accept entry family E, let SUBSCRIPT_RANGE be the dis-

crete_range_type_name, whose range is 1..M. Also let T be the task con-
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mult igay_accept_st atement

: :_ ACC_T entry_fanily_n_e [ entry_family_index_declaration ]

( paraueter_specification { ; paraneter_specification }, ) }

{ DO multieay_rendezvoue_statenents END { entry_family_nane } } ;

ACCEPT entry_faunily_nane [ entry_fanily_index_declaration ]

{ ( paraueter_specification { ; parameter_specification }* ) } ;

entry_ f anily_index_declarat ion

: :- entry_family_index_variable : discrete_range_type_name

p_anet er_specif ication

: :- sinple_nane { , s_ple_nane }$ : mode type_mark

Figure 4.1: Syntax for the Multiway Accept Statement.

taining the multiway accept statement S that uses E and let Wbe the array
of tasks indexed by SUBSCRIPT_RANGE that make calls on the entries in the

family E. The preceding paragraph implies that calls must be made on the

entries E[1], ..., E[M] by the tasks Will, ..., W[M], respectively, and that
no other tasks can make calls on these entries. When each member of the

family E has been called and task T has reached the statement 6", the mul-

tiway-rendezvous_statements within S are executed by T, with all members
of the array W suspended during the execution. After the execution of the
multiway.rendezvous_statements all M + 1 tasks resume their execution in

parallel.

To consider the parameter passing that supports the execution of S, let
X be a simple_name used in the parameter_specification. An instance of

X exists for each i in the range 1.. M. If the mode of X is in or in out,
the value of the i_h instance of X at the beginning of execution of multi-

way_rendezvous_statements is the value of the corresponding actual param-

eter in the entry call made by W[{J. If the mode of X is out or in out, the
value of X at the end of execution of multiway_rendezvous_statements is the

value received by the corresponding actual parameter of W[i].

The underlying implementation need only be consistent with the above
semantics: the ordering of suspension of tasks is nondeterministic and the

ordering of unsuspension of tasks is nondeterministic. As indicated in Fig-

ure 4.1, a multiway accept need not contain multiway.rendezvous_statements,

just as an Ada accept need not have a statement part. Such a multiway

accept has the same semantics as a multiway accept containing just a null
statement.

No Ada accept can use a multiway accept entry family name and mul-
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tiwayacceptscannotbeusedto selectoptionsin an Ada select statement.

4.2 Syntax for a Multiway Accept Entry Dec-

laration

An entry family used with a multiway accept must be declared with explicit
use of the index for the family as in

entry E[I: SUBSCRIPT_RANGE] (X: J.n T1; Y: out T2);

The use of the square brackets indicates these entries are multiway accept
entries, rather than Ada accept entries. Like Ada entries, the use of a

multiway accept entry family in the multiway accept statement must have

exactly the same form as in the declaration; this includes the choice of
identifiers and the choice of omitting or not omitting an explicit occurence

of in. In addition, the identifier used in declaring the index of the entry

family must be the same as the identifier used in declaring the index of the

array of tasks that call the multiway accept and this must be the same as

the identifier used as the index in making a call on the multiway accept

entry.

4.3 Syntax for a Multiway Accept Entry Call

A task W[I] calls the multiway accept entry Eli] of task T using the nota-

tion

T.E [l'l (...);

where I is the task index identifier declared for the array Wand where . ..

represents the actual parameter list. Each actual parameter must be a local

variable of the task type for W.

Multiway accept entry calls cannot be used to select options in an Ada

select statement.

4.4 Diva Procedure Calls

A "private" instantiation is required for a diva call within a multiway accept

statement, as explained at the end of Chapter 2.

Diva calls are used for operating on nonlocal vectors and on the vector

of formal parameters within a multiway accept statement. (Diva calls may
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also be used within a meet statement, as explained in Chapter 3, and outside

a multiway rendezvous, as explained in Chapter 2.)
The notation for accessing actual parameters within diva calls of a mul-

tiway accept statement will be illustrated for the multiway accept:

accept E[I: SUBSCRIPT_RAnGE] (X: <model> TI; Y: <mode2> T2) do

mult iway_rendezvous_stat ement s

end E;

The notation E [-]. X and E [-]. Y can be used as an actual parameter cor-

responding to a dynamic parameter to refer to a virtual vector whose range
is SUBSCRIPT_RANGE and whose component values are the values of the
relevant formal parameters. Thus, whereas within a diva call of a meet
statement the use of the notation

IDENTIFIERI[-].IDENTIFIER2

refers to a virtual vector of local variables, this same notation inside a

multiway accept statement block refers to a virtual vector of multiway
accept parameter values.

The actual parameter corresponding to a formal parameter of the diva

procedure can refer to a variable declared prior to the multiway accept

statement. However, if the formal parameter is a dynamic parameter, the
following rule applies: the declaration of the variable used as the actual

parameter must be visible at the multiway accept entry calls.

32



Chapter 5

Rationales for Adam

Constructs

Three principles motivate many of the Adam design decisions:

1. Provide a high level of abstraction.

2. Permit a decentralized implementation whenever feasible.

3. Don't ask a programmer to make a choice if the choice
doesn't matter.

By a high level of abstraction we mean that the focus of programming
should be on what computation is desired, with the translator having the

responsibility of deciding how to implement the desired synchronization
and communication.

The second principle is referred to in the rest of this report as "the

decentralized implementation strategy". Given a suitable computer, much
of the work of a multiway rendezvous and of a diva call within it can be

performed by the members of the array of tasks that participate in the

multiway rendezvous. There are various ways to carry out such a strategy.
A diva call outside a multiway rendezvous can also be implemented using a

decentralized strategy, by creating an array of tasks invisible to the Adam

programmer.
The third principle is to some extent a corollary of the first principle.

There are two extremes in which a particular choice wouldn't matter: sit-

uations where any choice among the available options is equally valid and

situations in which only a single choice is valid, due to constraints elsewhere

in the program.
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Thefirst extreme is illustrated in sequential programs by a multiway
branch statement. Any choice of order in selecting branches of a multi-

way branch leads to the same logical result and, since the case statement

doesn't ask the programmer to make a choice, it separates concerns of ef-

ficiency from concerns of logical correctness. This extreme underlies the

desirability of supporting nondeterminism in programming languages, such

as that studied by Hoare [18]. Adam supports this kind of nondeterminism

by not asking a programmer to make a choice in such things as the order
of combining within the computation of a diva call and the order in which

required calls on a multiway accept are processed.

The second extreme is illustrated in Adam by the fact that the pro-

grammer uses hyphen notation rather than indicating the range of a virtual

vector used by a diva call within a multiway rendezvous. The only valid

choice of this range is the range of the tasks participating in the multiway
rendezvous.

Exceptions are made to the third principle when necessary to keep Adam

compatible with Ada. For example, Ada requires that the choice of identi-

fiers in an accept statement be the same as the choice in the corresponding

entry declaration and the Adam language has a similar requirement.

Rather than striving for maximal generality, the Adam language demon-
strates how the multiway rendezvous, combined with a suitably restrictive

procedure employing no explicit parallelism, can provide a simple level of

abstraction yet support translation to target code appropriate for a range

of parallel computers. There are certainly straightforward ways in which
the Adam constructs can be generalized.

5.1 Diva Procedures

The decentralized implementation strategy distributes the work of each

call on a diva procedure. Thus diva procedures facilitate a time-efficient

implementation, yet permit the programmer to think at a high level of
abstraction.

When appropriate for the target machine, the target Ada code produced
by the Adam translator uses the following facts:

• Given sufficiently many processors, a diva procedure can be executed

in time proportional to log(n), where n is the length of the vectors

used as input by the procedure. This can be accomplished by imple-
menting the nondeterministic divide as a divide at the middle of a

vector and letting multiple processors use a binary combining tree to

share in the computation of the procedure.
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Thenondeterministicdividecanbeimplementedasadividejustbe-
forethelastcomponentof avector(orjustafterthefirstcomponent)
therebyyieldingasequentialloop.Suchaloopis typicallymoreeffi-
cientthanrecursionforimplementingadivaprocedureonasequential
computer.Thusduringasingleuseofa divaprocedure,someof the
recursiveactivations-- suchasthosenearthebeginningofexecution
of theprocedure-- canbe carried out in parallel and the rest can

be implemented sequentially without the overhead of recursive calls.

This facilitates an implementation in which processors do some of the

work on the procedure independently and then combine their partial
results. If the divide were defined to be a deterministic divide at the

middle, an implementation using a sequential loop (without a stack)

would not be possible, in general.

The nondeterministic divide need not be implemented the same way

on different processors, even for a single diva call within a single par-

allel computer. For example, consider a RING target machine having

an even number p of processors. When the pragma SAME_IN VALUES

is not used, the target code produced by the Adam translator imple-

ments the nondeterministic divide so the number of ways one vector

of length p is decomposed into single components at the same time by
the different processors is p/2. It is even possible to implement the

nondeterministic divide so that -- at the same time -- each processor

uses a different decomposition.

The correctness of a well-written diva procedure can be proven in a
straightforward way. We illustrate this using the diva procedure in Fig-

ure 5.1. As explained in Chapter 2, the underlying implementation chooses

A'INITIAL and A'FINAL, used in making the recursive calls, to be nonempty

slices of A such that A is A'INITIAL concatenated with A'FINAL. The pro-

grammer is responsible for ensuring the correctness of such a diva procedure

regardless of how the implementation chooses to make such a nondetermin-
istic divide.

Such a proof of correctness, based on strong induction, can proceed as
follows: First show that, when A has length 1, the diva procedure satis-

fies the specification given in its comments. Then assume the length of A
is greater than 1 and the diva procedure satisfies its specification for all

smaller vectors than the length of A, so that

INITIAL MAXis assigned the maximum value of A'INITIAL,

IN ITIAL L{3Cis assigned the first location of the maximum of A'INITIAL,

FINAL_MAX is assigned the maximum value of A'FINAL, and

FINAL L0C is assigned the first location of the maximum of A'FINAL.
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generic

type RANGE_TYPE is range ,>;

type DYNAMIC_VECTOR is array (RANGE_TYPE) of INTEGER;

diva procedure FIND_LOC (A: in DYNAMIC_VECTOR;

MAX: out INTEGER;

LOC: out RANGE_TYPE) is

-- MAX is assigned the maximum value of A.

-- LOC is assigned the first location of the maximum of A.

INITIAL_MAX, FINAL_MAX,

INITIAL_LOC, FINAL_LOC: INTEGER;

begin

if A'LENGTH- 1 then

MAX :- A(A'FIRST);

LOC :- A'FIRST;

else

FIND_LOC (A'INITIAL, INITIAL_MAX, INITIAL_LOC) ;

FIND_LOC (A'FINAL, FINAL_MAX, FINAL_LOC);

if INITIAL_MAX >- FINAL_MAX then

MAX :- INITIAL_MAX;

L0C :- INITIAL_LOC;

else

MAX :- FINAL_MAX;

LOC :- FINAL_LOC;

end if ;

end if ;

end FIND_LOC ;

Figure 5.1: Generic Diva Procedure to Find the First Location of the Max-

imum of an Integer Valued Vector.
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To complete the proof, simply show that the false branch of the if state-

ment assigns the specified values to I_,_Xand LOC.

A diva procedure can abstract away issues irrelevant to the logical cor-

rectness of the procedure in question. Such issues include whether a loop

will be used for sequential implementation, whether parallelism will be used

to implement the procedure, whether the target computer is MIMD or

SIMD, whether processors will do some of the combining work indepen-
dently before combining their partial results, and what technique will be

used in combining partial results from different processors (a combining

tree of processors, left or right shifts, pointer doubling, or other technique).

The resulting high-level syntax results in code more portable and easier
to read, write, and verify than approaches failing to abstract away such
details.

The syntax rules of a generic diva procedure P are compiler-enforceable.

The requirement that subprograms used within P be declared within P

permits a compiler to disallow additional recursive calls on P as a result
of executing this Ada code. The requirement that a diva instantiation

cannot appear within the declaration of a diva procedure simplifies the

implementation (and we have not yet found important applications of such a

hierarchical approach except for computing reductions of multidimensional

arrays).

The syntax of generic diva procedures requires that dynamic parameters
be listed first, followed by nondynamic parameters of mode in, if any,

followed by other nondynamic parameters, if any. These restrictions enforce

a convention intended to make the language easier for programmers to use.

For instance, since a diva call operates on vectors, listing such vectors first

in the diva call places them in a prominent position. Since they require

the programmer to remember additional rules, the simplicity provided by
these restrictions is debatable, and they might be lifted in the future. Only

additional experience can resolve such issues. (A similar approach was
taken by Ada in requiring that basic declarations precede later declarations;

experience with this restriction has led to eliminating the restriction in the

next version of Ada.[1])
Although an instantiation of an Ada generic procedure can be either a

basic or a later declarative item, a normal instantiation of a generic diva

procedure must be a basic declarative item. This restriction allows the

translator to insert (at the corresponding place in the target Ada code)

items permitted as basic, but not as later, declarative items. This restric-

tion and the fact that such an instantiation cannot precede the declaration

of the generic procedure body imply that an Adam program must have
more than a single declaration block.

The private part of a task type specification is an extension of Ada
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that provides information to a task of the task type. Like the private part

of a package specification, information within the private part of a task

type specification is not visible outside the task type itself. Placing diva

procedure instantiations within a private part of a task type specification

is natural since an instantiated diva procedure can be viewed as a private

resource. In addition, the translator can insert (at the corresponding place
in the target Ada code) entries to support the decentralized implementa-

tion strategy, with assurance that type names will bind correctly to the

appropriate meanings.

5.2 Meet Statements

Notice that, placed in the code for the task type of an array of workers, the
lines

meet

null ;

end meet;

behave as a barrier [14], ensuring all workers synchronize before performing
further work.

Informally, the first semantic axiom in Figure 3.2 states that if P(i)
holds prior to meet, then V_P(i) holds immediately after meet in the pro-

gram text. This axiom conveys in a formal way the informal notion that
no worker can get beyond meet until it and all other workers in the array

have arrived at meet. Informally, the second semantic axiom states that if

ViQ(i) holds before end meet, then Q(i) holds immediately afterwards in

the program text. This axiom is based on the restriction required by these

axioms, that if one of the workers has write access to a nonlocal memory
location outside meet statements, no other worker has read access to this

memory location outside meet statements. The reason the full strength of

ViQ(i) cannot be asserted in the program text immediately after end meet
is because this could create a race condition: for any il, worker il could

modify the truth value of Q(il), such as by executing a statement that
assigns a value to the il th component of a nonlocal array.

To illustrate the use of these semantic axioms, consider the second ver-

sion of FACT_.ADAM in Section 1.6. In this example, n = 5 and P(i) can be
the predicate

WORKER [i]'s MY_VALUE = i
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and Q(i) can be the predicate

WORKER[ i ]'sMY_RESULT ----I-L<n i

where I-I denotes a product.

The decentralized implementation strategy lets the work of a meet state-
ment be performed by the members of the array of tasks whose task type

contains the meet statement.

The Adam translator relies exclusively on the pragma SAME_IN_VALUES

for the information it provides. While it is conceivable that a compiler could

extract this information for the applications described in this report, such
information cannot be extracted for all Adam programs. For instance, input

data could be used in the task type of an array of workers to determine the

value to assign to a local variable used as an actual parameter corresponding
to a nondynamic in parameter in a diva call within a meet statement.

5.3 Square Bracket Notation

Square brackets are used in the Adam language as a consistent notational
device that

• Avoids the use of reserved words, but makes clear an extension to Ada

is being used. The extensions to Ada, except for meet statements and
diva procedure declarations, instantiations, and calls, are:

- multiway accept entry declarations

- multiway accept entry calls

- multiway accept statements

- indexed task array declarations

No new reserved words are used in these extensions. Instead square

brackets indicate the difference between Adam and Ada.

• Suggests powerful constructs are being used. For example, the Ada
code needed to ensure that the members of an array of n tasks gain

automatic access to their index requires the time for executing at least

O(tog(n)) rendezvous.

Furthermore, if rounded parentheses were used in a multiway accept

entry call, then for a task T the syntax T.E(I) would be ambiguous unless

one looked at declarations appearing possibly far earlier in the program.
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It could either mean to call the entry g of an Ada accept (with actual
parameter I) or to call the parameterless member g(I) ofa multiway accept

statement. Wirth has recommended that the syntax for a programming

language should be capable of recursive descent parsing with one-symbol

lookahead, regardless of how parsing is actually accomplished. He argues
that this syntax is easy for programmers to understand.1

5.4 Multiway Accepts

The decentralized implementation strategy is the reason why a non-hyphened

variable used as an actual parameter corresponding to a dynamic parame-

ter in a diva call within a multiway accept must be visible at the multiway
accept entry call.

Requiring that only a single multiway accept appear in a task for each

entry family and prohibiting its use within a select statement make it easy
for the implementation to determine which entry calls are associated with

which multiway accepts in support of the decentralized implementation

strategy.

In the Ada accept statement the entry accepted must have exactly the

same form as the declaration of the entry. The same holds for the multiway

accept in Adam for compatibility between the two languages. This requires

that the index of an entry family appear in the declaration of the entry

family. Restrictions on the use of identifiers (in declaring the indexes of

an entry family, in declaring the array of tasks, and in making entry calls)
ensure that each task in the array of tasks can only call the corresponding

entry of the multiway accept family. These restrictions not only simplify
the Adam translator but are consistent with the use of reasonable structure

in an Adam program

A dotted notation, or something similar, is needed to create a virtual

vector using the formal parameters of a multiway accept. This facility

is to be contrasted with a restriction in Section 4.1.3, Paragraph 17, of
the Ada reference manual [26]. Such notation facilitates the decentralized

implementation strategy.

5.5 Comparison of Two Approaches

The meet statement and the multiway accept statement provide two dif-

ferent methods of supporting the multiway rendezvous within an Adam

1See page 164 of Wlrth's Turing award lecture [28] and page 29 of the reprinted
version of [27].
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program.A conceptual difference is that the multiway accept is used with
an array of tasks and a centralizing task, which can execute the multiway

accept statement as just one of many of its activities, whereas the meet is

used with just an array of tasks.

Comparisons of programs like those mentioned in Chapter 1 (and the
two listed in that chapter that use the multiway rendezvous) suggest that
the meet statement leads to shorter and simpler programs. The rules of

the meet statement are also less awkward than the rules of the multiway

accept. Awkward rules for the multiway accept, for which there are no
corresponding rules for the meet statement include: the identifier used in

declaring the index of a multiway accept entry family must be the same
as the identifier used in declaring the array of tasks that call the multiway

accept and this must be the same as the identifier used as the index in

making a call on the multiway accept, neither a multiway accept nor a

multiway accept entry call can be used to select options in an Ada select
statement and, when hyphen notation is not used to refer to a dynamic

parameter in a diva call within a multiway accept, the variable used for

this purpose must be visible at the multiway accept entry calls.
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Appendix A

Additional Examples

The following examples are given here:

• USE_FIRST_RIGBT_GREITER_.hDAM, which computes, for each posi-

tion in a vector, the first position to the right holding a greater value,

if there is such a position,

• USE_L00KUP_. ADA_i,which computes the position in a not-necessarily-

sorted vector whose component equals a given key value,

• USE_FIND_PLATEhU_LENGTH_.ADAH, which computes, for each posi-

tion in a vector, the number of contiguous positions having the same

value,

• SORT_. ADAM, which sorts a vector, and

• USE_PREFIX_. ADAH, which computes a parallel prefix result,

as well as a diva procedure, UPDATE, which assigns values to the components

of two vectors. An Ada package PARhLLEL_OUT is used (but not shown) that

permits a task to build up an output buffer via calls on PRINT. The task

can eventually execute a PRINTLINE call to print the buffer, thus avoiding

unreadable interleaving of output from members of an array of tasks.

A.1 US E_FIRST_RIGHT_GREATER_.ADAM

This first example also illustrates what a VAX/VMS terminal session can
look like. To see that that the diva procedure FIRST_RIGHT_GREATER sat-
isfies the specifications in its comment block, use strong induction as il-
lustrated in Section 5.4, and assume that the parameters (]IVEN_LDC and
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GIVEN_VALVE are two fized values. The rule given in the second paragraph

of Section 3.2 then assures us that the diva call within the meet state-

ment will have the desired effect, even though different members of WORKER

actually use differenf values for these two parameters.

$ TYPE USE_FIRST_RIGHT_GREATER_. ADAM

with INTEGER_TEXT_IO, TEXT_IO, PARALLEL OUT;

use INTEGER_TEXT I0, TEXT_I0;

procedure USE_FIRST_RIGHT_GREATER is

N: INTEGER;

type ANS_TYPE is record

LOC,

VALUE: INTEGER;

FOUND: BOOLEAN;

end record;

generic

type RANGE_TYPE is range <>;

type DYNAMIC_VECTOR is array(RANGE_TYPE) of INTEGER;

diva procedure FIRST_RIGHT_GREATER (A: in DYNAMIC_VECTOR;

GIVEN_LOC: in INTEGER;

GIVEN_VALUE: in INTEGER;

ANS: out ANS_TYPE) is

-- ANS.FOUND is true if and only if A has a component to the

-- right of A(GIVEN_LOC) greater than GIVEN_VALUE.

-- If ANS.FOUND is true, then:

-- ANS.LOC is the location of the first value to the right of

-- A(GIVEN_LOC) greater than GIVEN_VALUE and

-- ANS.VALUE is A(ANS.LOC).

L. R: ANS_TYPE;

begin

if A'LENGTH = 1 then

if A_FIRST > GIVEN_LOC and then A(A'FIRST) > GIVEN_VALUE then

ANS. LOC :" A 'FIRST ;

ANS.VALUE :- A(A_FIRST);

ANS. FOUND :- TRUE ;

else

ANS.FOUND :- FALSE;

end if ;

else

FIRST_RIGHT_GREATER (A'INITIAL, GIVEN_LOC, GIVEN_VALUE, L) ;

FIRST_RIGHT_GR£ATER (A _FINAL, GIVEN_LOC, GIVEN_VALUE, R) ;

if L.FOUND then
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ANS :- L;

elsif R.FOUND then

ANS :- R;

else

ANS.FOUND : = FALSE;

end if ;

end if ;

end FIRST_RIGHT_GREATER;

begin -- USE_FIRST_RIGHT_GREATER

GET (N) ;

PUT ("The length of the vector is ");

PUT (N, 1); NEW_LINE;

declare

subtype SUBRANGE is INTEGER range I..N;

type VECTOR is array(SUBRANGE) of INTEGER;

diva procedure MY_FIRST_RIGHT_GREATER is

new FIRST_RIGHT_GREATER (SUBRANGE, VECTOR) ;

X: VECTOR;

ANSWER: ANS_TYPE ;

procedure DO_FIRST_RIGHT_GREATER is

task type WORKER_TYPE is

private

diva procedure MY_FIRST_RIGHT_GREATER is new

FIRST_RIGHT_GREATER (SUNRANGE, VECTOR);

end WORKER_TYPE;

WORKER: array[I: SUBRANGE] of WORKER_TYPE;

task body WORKER_TYPE is

MY_ANSWER: ANS_TYPE;

MY_X: INTEGER;

package PAR_0UT is new PARALLEL_OUT;

use PAR_0UT;

begin

MY_X := X(1);

meet

MY_FIRST_RIGHT_GREATER (X, I, MY_X, MY_ANSWER);

end meet;

if MY_ANSWER.FOUND then

PRINT ("The answer for WORKER["); PRINT(I);

PRINT ("] is WORKER["); PRINT(MY_ANSWER.LOC); PRINT ("]");

else
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PRINT ("No worker to the right of WORKER["); PRINT(I);

PRINT ("] has a greater value");

end if ;

PRINT_LINE;

end WORKER_TYPE ;

begin -- DO_FIRST_RIGHT_GREATER

null; -- Activate the array of workers.

end DO_FIRST_RIGHT_GREATER;

begin -- declare block

for I in SUBRANGE loop

GET CXCI));

end loop;

PUT_LINE ("The vector of values is:");

for I in SUBRANGE loop

PUT (l(I), I); NEW_LINE;

end loop;

DO_FIRST_RIGHT_GREATER;

end; -- declare block

end USE_FIRST_RIGHT_GREATER;

$ ADAM/MACHINE-RING USE_FIRST_EIGHT_GREATER_.ADAM

WARNING: Pra_a SANE_IN_VALUES is not found for diva procedure

FIRST_RIGHT_GREATER

Thus any single occurrence of a diva call on an instantiation of this

diva procedure, where the call occurs within a meet statement,

is assumed NOT to be made with the same corresponding in values for

all tasks participating in the call. If this pragma was omitted

unintentionally, then the computation of each diva call on this diva

procedure is likely to take more run-time than necessary.

$ ADA USE_FIRST_RIGHT_GREATER_.ADA

$ACS LINK USE_FIRST_RIGHT_GREATER

%ACS-I-CL_LINKING, Invoking the VMS Linker for VAX_VMS target

$ ASSIGN USE_FIRST_RIGHT_GRFATER.DATI ADA$INPUT

$ RUN USE_FIRST_RIGHT_GREATER.EXE

The length of the vector is 10

The vector of values is:

1

2

3

4

5
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2

9

6

5

8

No worker to the right of

The answer for WORKER[ 2]

The answer for WORKER[ 4]

The answer for WORKER[ 6]

The answer for WORKER[ 8]

The answer for WORKER[ 9]

The answer for WORKER[ I]

The answer for WORKER[ 3]

The answer for WORKER[ 5]

WORKER[ 10] has a greater value

is WORKER[ 33

is WORKER[ 5]

is WORKER[ 7]

is WORKER[ I0]

is WORKER[ 10]

is WORKER[ 2]

is WORKER[ 4]

is WORKER[ 7]

No worker to the right of WORKER[ 7] has a greater value

$ ASSIGN USE_FIRST_R/GHT_GREATER.DAT2 ADA$INPUT

ZDCL-I-SUPE_SEDE, previous value of ADA$INPOThas been superseded

$ RUN USE_FIRST_RIGHT_GREATF_.EXE

The length of the vector is I0

The vector of values is:

5

4

3

2

1

10

9

8

7

6

No worker to the right of

The answer for WORKER[ 2]

The answer for WORKER[ 4]

No worker to the right of

No worker to the right of

No worker to the right of

The answer for WORKER[ 1]

The answer for WORKER[ 3]

The answer for WORKER[ 5]

No worker to the right of

WORKER[ 10] has a greater value

is WORKER[ 6]

is WORKER[ 6]

WORKER[ 6] has a greater value

WORKER[ 8] has a greater value

WORKER[ 9] has a greater value

is WORKER[ 6]

is WORKER[ 6]

is WORKER[ 6]

WORKER[ 7] has a greater value
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A.2 USE_LOOKUP_.ADAM

The program USE_FIRST_RIGHT_GREATER_. ADAM does not use either of the

pragmas

pragma SAME_IN_VALUES (USE_FIRST_RIGHT_GREATER) ;

or

pragma SAME_IN_VALUES (FIRST_RIGHT_GREATER) ;

since neither USE_FIRST_RIGHT_GREATER nor any instantiation of the generic

diva procedure FIRST_RIGHT_GREATER is intended to be used with just a

single value for GIVEN_LOC. The various WORKER tasks certainly do not use

the same value in the diva call

MY_FIRST_RIGHT_GREATER (X, I, MY_X, MY_ANSWER) ;

for the actual parameter I corresponding to the parameter GIVEN_LOC (or

even for the actual parameter MY_X corresponding to GIVEN_VALUE).

The following simple Adam program illustrates a situation in which

this pragma should be used. The generic diva procedure LOOKUP in this

program returns the component value of the vector B corresponding to the

first position in the vector A where a component value equals a given key, if

there is such a component of A. Since the programmer knows the same key

value will be used in any particular call on an instantiation of LOOKUP, the

pragma SAME_IN_VALUES is used to help the translator generate efficient

code for the diva call on MY_L00KUP.

with TEXT_IO, PARALLEL_OUT;

use TEXT_I0;

procedure USE_LOOKUP is

package INTEGER_TEXT_ID is nee TEXT_IO.INTEGER_IO (INTEGER);

use INTEGER_TEXT_I0;

N: INTEGER;

type ANSWER_TYPE is record

FOUND: BOOLEAN;

VALUE: INTEGER;

end record;

generic

type RANGE_TYPE is range <>;

type DYNAHIC_VECTOR is array(RANGE_TYPE) of INTEGER;

diva procedure LOOKUP (A, B: in DYNAMIC_VECTOR;
KEY: in INTEGER; ANS: out ANSWER_TYPE) is

-- ANS.FOUND is assigned the value TRUE if and only if KEY equals the value

-- of a component of A.

-- If ANS.FOUND then ANS.VALUEequals the component value of B
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-- corresponding to the first such component value of A.

L, R: ANSWER_TYPE; -- results of left and right slices

begin

if AJLENGTH - 1 then

ANS.FOUND :- (A(A'FIRST) - KEY);

ANS.VALUE :- B(A'FIRST);

else

LOOKUP (A'INITIAL, B'INITIAL, KEY, L);

LOOKUP (A'FINAL, B'FINAL, KEY, R);

if L.FOUND then

ANS :- L;

else

ANS := R;

end if;

end if;

end LOOKUP;

pragma SAME_IN_VALUES (LOOKUP);

begin -- USE_LOOKUP

GET (N);
PUT ("The length of the vector is ");

PUT (N, 1); NEW_LINE;

declare

subtype SUBRANGE is INTEGER range 1..N;

type VECTOR is array(SUERANGE) of INTEGER;

X, Y: VECTOR;

KEY: INTEGER;

procedure DO_LOOKUP is

task type WORKER_TYPE is

private

diva procedure MY_L00KUP is new LOOKUP (SUBRANGE, VECTOR);

end WORKER_TYPE;

WORKER: array[MY_INDEX: SUERANGE] of WORKER_TYPE;

task body WORKER_TYPE is

MY_ANSWER: ANSWER_TYPE;

package PAR_OUT is new PARALLEL_0UT;

use PAR_0UT;

begin
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meet

MY_LOOKUP (X, Y, KEY, MY_ANSWER) ;

end meet ;

if MY_ANSWER. FOUND then

PRINT ("WORKER["); PRINT (MY_INDEX); PRINT("] finds the answer");

PRINT (MY_ANSWER.VALUE) ; PRINT_LINE;

else

PRINT ("WORKER["); PRINT (MY_INDEX); PRINT("] finds no answer");

PRINT_LlffE;

end if ;

end W0RKER_TYPE;

begin -- D0_LOOKUP

null; -- Activate the array of workers.

end DO_LOOKUP;

begin

for I in SUBRANGE loop

GET (X(I)); GET (Y(I));

end loop;

PUT_LINE ("The vectors of keys and values are:");

for I in SUBRANGE loop

PUT (X(I), 1); PUT (Y(I)); NEW_LINE;

end loop;

GET (KEY);

PUT ("The key to search for is ");

PUT (KEY, 1); NEW_LINE;

D0_L00KUP;

end;

end USE_LOOKUP;

A.3 USE_FIND_PLATEAU_LENGTH_.ADAM

The Adam program in this section computes, for each position in a vector,
the number of contiguous positions having the same value.

with INTEGER_TEXT_IO, TEXT_IO, PAKALLEL_OUT;

use INTEGER_TEXT_I0, TEXT_IO;

procedure USE_FIND_PLATEAU_LENGTH is

.............................................................................

-- Each worker finds out how many workers contiguous to it have the

-- same value as the worker itself.

-- We use the phrase "the plateau of A containing A(GIVEN_LOC)" in our
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-- comments to mean: "the longest slice of A that both contains the

-- component of A vith subscript GIVEN_LOC and has all component values

-- equal to A(GIVEN_LOC)"

-- [This problem appears in Gries, D., The Science of Programming,

-- Springer-Verlag, Nee York, 1981.]
.............................................................................

N: INTEGER;

type ANS_TYPE is record

PLATEAU_LENGTH,

LENGTH,

FIRST_COUNT,

LAST_COUNT:

PLATEAU_FROM_START,

PLATEAU_TOEND:

end record;

INTEGER;

BOOLEAN;

generic

type RANGE_TYPE is range <>;

type DYNAMIC_VECTOR is array(RANGE_TYPE) of INTEGER;

diva procedure FIND_PLATEAU_LENGTH (A: in DYNAMIC_VECTOR;

GIVEN_LOC: in RANGE_TYPE;

GIVEN_VALUE: in INTEGER;

ANS: in out ANS_TYPE) is

-- If GIVEN_LOC is in the subscript range of A and

-- A(GIVEN_LOC) - GIVEN_VALUE

-- then:

-- ANS.PLATEAU_LENGTH is the length of the plateau of A containing

-- A(GIVEN_LOC),

-- ANS.PLATEAU_FROM_START if and only if the plateau of A containing

-- A(GIVEN_LOC) includes the first component value of A, and

-- ANS.PLATEAU_T0_END if and only if the plateau of A containing

-- A(GIVEN_LOC) includes the final component value of A,

-- otherwise:

-- ANS.PLATEAU_LENGTH has the value 0,

-- ANS.PLATEAU_FROM_START is FALSE, and

-- ANS.PLATEAU_TO_END is FALSE.

-- ANS.LENGTH is the length of A.

-- ANS.FIRST_COUNT is the number of consecutive components of A,

-- starting with the first component of A, whose value is GIVEN_VALUE.

-- ANS.LAST_COUNT is the number of consecutive components of A,

-- ending with the last component of A, whose value is GIVEN_VALUE.

L, R: ANS_TYPE;

begin

55



if A'LENGTH = I then

ANS. LENGTH :- I ;

if A'FIEST - GIVEN_LOC then

ANS. PLATEAU_LENGTH :- 1 ;

ANS. PLATEAU_FROM_START : - TRUE;

ANS. PLATEAU_T0_END : - TRUE;

ANS.FIRST_COUNT :- 1;

ANS.LAST_COUNT :- 1;

else

ANS. PLATEAU_LFJgGTH :- O;

ANS.PLATEAU_FROM_START :- FALSE;

ANS.PLATEAU_TO_END :- FALSE;

if A(A'FIRST) - GIVEN_VALUE then

ANS. FIRST_COUNT :- 1 ;

ANS.LAST_COUNT :- 1 ;

else

ANS.FIRST_COUNT :- 0 ;

ANS.LAST_COUNT :- 0;

end if ;

end if ;

else

FIND_PLATEAU_LENGTH (A'INITIAL, GIVEN_LOC, GIVEN_VALUE, L) ;

FIND_PLATEAU_LENGTH (A'FINAL, GIVEN_LOC, GIVEN_VALUE, R);

if L.PLATEAU_LENGTH > 0 then

if L.PLATEAU_TO_END then

ANS.PLATEAU_LENGTH :- L. PLATEAU_LENGTH + R. FIRST_COUNT ;

else

ANS. PLATEAU_LENGTH :- L. PLATEAU_LENGTH ;

end if ;

elsif R.PLATEAU_LENGTH > 0 then

if R.PLATEAU_FROM_START then

ANS.PLATEAU_LENGTH := L. LAST_COUNT + R.PLATEAU_LENGTH ;

else

ANS.PLATEAU_LENGTH :- R.PLATEAU_LENGTH ;

end if ;

else

ANS. PLATEAU_LENGTH :- 0 ;

end if ;

ANS.LENGTH :- L.LENGTH + R.LENGTH;

ANS. PLATEAU_FROM_START :- .L. PLATEAU_FROM_START or

(L.LAST_COUNT - L. LENGTH and R. PLATEAU_FROM_START) ;

ANS.PLATEAU_T0_END :- R.PLATEAU_T0_END or

(R.FIRST_COUNT - R. LENGTH and L.PLATEAUT0_END) ;

if L.FIRST_COUNT - L.LENGTH then

ANS.FIRST_COUNT :- L.LENGTH + R.FIRST_COUNT;
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else

ANS. FIRST_COUNT :- L. FIRST_COUNT;

end if ;

if R.LAST_COUNT - R.LENGTH then

ANS.LAST_COUNT :- L.LAST_COUNT + R.LENGTH;

else

ANS. LAST_COUNT := R. LAST_COUNT ;

end if ;

end if ;

end FIND_PLATEAU_LENGTH;

begin -- USE_FIND_PLATEAU_LENGTH

GET (N) ;

PUT ("The length of the vector is ");

PUT (g, i); NEW_LINE;

declare

subtype SUBRANGE is INTEGER range I..N;

type VECTOR is array(SUBRANGE) of INTEGER;

X: VECTOR;

ANSWER: ANS_TYPE ;

procedure DO_FIND_PLATEAU_LENGTH is

task type WORKER_TYPE is

private

diva procedure MY_FIND_PLATEAU_LFJGTH is

new FIND_PLATEAU_LENGTH (SUBRANGE, VECTOR);

end WORKER_TYPE ;

WORKER: array[I: SUBRANGE] of WORKER_TYPE;

task body WORKER_TYPE is

MY_ANSWER: ANS_TYPE;

X_I: INTEGER;

package PAR_OUT is new PARALLEL_gUT;

use PAR OUT;

begin

X_I := X(I);

meet

MY_FIND_PLATEAU_LENGTH (X, I, X I, MY_ANSWER);

end meet;

PRINT ("The plateau for WORKER["); PRINT(I); PRINT ("] has length ");

PRINT(MY_ANSWER.PLATEAU_LENGTH); PRINT_LINE;

end WORKER_TYPE;
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begin -- D0_FIND_PLATEAU_LENGTH

null; -- activate the array of workers

end DO_FIND_PLATEAU_LENGTH;

begin -- declare block

for I in SUBRANGE loop

GET (X(I)) ;

end loop;

PUT_LIKE ("The vector is:") ;

for I in SUBRANGE loop

PUT (X(I), I); NEW_LINE;

end loop;

D0_FIND_PLATEAU_LENGTH ;

end; -- declare block

end USE_FIND_PLATEAU_LENGTH;

A.4 SORT_.ADAM

Here is an Adam program to sort a vector:

with INTEGER_TEXT_I0, TEXT_I0, PARALLEL_0UT;

use INTEGER_TEXT_I0, TEXT_IO;

procedure SORT is

-- Sorts a vector into ascending order in parallel.
.............................................................................

-- The vector is distributed across an array of workers so that each worker

-- is assigned a corresponding component value. T_o diva calls are used:

-- I. A diva call counts, for each I, hov many occurences of component

-- values less than WORKER[I]'s component value are in the vector plus

-- how many occurences of component values equal to WORKER[I]'s

-- component value are to the left of or at W0RKER[I]. The resulting

-- count is assigned to a local variable MY_TARGET.

-- 2. MY_TARGET is the target address in the vector where W0RKER[I]'s value

-- should be sent. Another diva call carries out the communication.

.............................................................................

N: INTEGER;

generic

type RANGE_TYPE is range <>;

type DYNAMIC_VECTOR is array(RANGE_TYPE) of INTEGER;

diva procedure COMPUTE_COUNT (A: in DYNAMIC_VECTOR;
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GIVEN_L0C: in RANGE_TYPE;

GIVEN_VALUE: in INTEGER;

COUNT: out INTEGER) is

-- COUNT is assigned the number of components of A that are either smaller

-- than GIVEN_VALUE or are: equal to GIVEN_VALUE and to the left or at

-- GIVEN_LDC.

L, R: INTEGER; -- results of left and right slices

begin

if A'LENGTH- I then

if A(A'FIRST) < GIVEN_VALUE or else

(A(A'FIRST) - GIVEN_VALUE and then A'FIRST <- GIVEN_LOC) then

COUNT :l I;

else

COUNT :- O;

end if ;

else

COMPUTE_COUNT (A'INITIAL, GIVEN_LOC, GIVEN_VALUE, L);

COMPUTE_COUNT (A'FINAL, GIVEN_LOC, GIVEN_VALUE, R);

COUNT := L + R;

end if ;

end COMPUTE_COUNT ;

generic

type RANGE_TYPE is range <>;

type DYNAMIC_VECTOR is array(RANGE_TYPE) of INTEGER;

diva procedure COMMUNICATE (A: in out DYNAMIC_VECTOR;

GIVEN_LOC: in RANGE_TYPE;

GIVEN_VALUE: in INTEGER) is

-- If A has a subscript equal to GIVEN_LOC, then

-- this component of A receives the value GIVEN_VALUE.

begin

if A'LENGTH = I then

if A'FIRST ,, GIVEN_LOC then

A(A'FIRST) := GIVEN_VALUE;

end if ;

else

COMMUNICATE (A'INITIAL, GIVEN_LOC, GIVEN_VALUE) ;

COMMUNICATE (A 'FINAL, GIVEN_LOC, GIVEN_VALUE) ;

end if ;

end COMMUNICATE;

begin -- SORT

GET (N) ;

PUT ("The length of the vector is ");

PUT (N, I); NEW_LINE;
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declare

subtype SUBRANGE is INTEGER range 1..N;

type VECTOR is array(SUBRANGE) of INTEGER;

X: VECTOR;

procedure DO_SORT is

task type WORKER_TYPE is

private

diva procedure MY_COMPUTE_COUMT is neg COMPUTE_COUNT (SUBRANGE, VECTOR);

diva procedure MY_COMMUNICATE is neg COMMUNICATE (SUBRANGE, VECTOR);

end WORKER_TYPE;

WORKER: array[I: SUBRANGE] of WORKER_TYPE;

task body WORKER_TYPE is

COUNT: INTEGER;

MY_TARGET: SUBRANGE;

MY_VALUE: INTEGER;

MY_NEW_VALUE: INTEGER;

package PAR_OUT is new PARALLEL_OUT;

use PAR_OUT;

begin

MY_VALUE :- I(I);

neet

MY_COMPUTE_COUNT (WORKER[-].MY_VALUE, I, MY_VALUE, MY_TARGET);

NY_CON_ICATE (WORKER[-].MY_NEW_VALDE, MY_TARGET, MY_VALUE);

end meet;

X(I) :- MY_NEW_VALUE;

end WORKER_TYPE;

besin -- DO_SORT

null; -- Activate the array of workers.

end DO_SORT;

begin -- declare block

for I in SUBRANGE loop

GET (X(I));

end loop;

PUT_LINE ("The vector of values before the sort is:");

for I in SUBRANGE loop

PUT (X(I)) ;

end loop;

NEW_LINE; NEW_LINE;

D0_SORT;
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PUT_LINE ("The vector of values after the sort is:");

for I in SUBRANGE loop

PUT (X(I));

end loop;

end; -- declare block

end SORT;

A.5 USE_PREFIX_.ADAM

The next Adam program illustrates how a parallel prefix application can
be programmed:

with INTEGER_TEXT_I0, TEXT_IO, PARALLEL__JT;

use INTEGER_TEXT_IO, TEXT_IO;

procedure USE_PREFIX is

N: INTEGER;

generic

type RANGE_TYPE is range <>;

type DYNAMIC_VECTOR is array(RANGE_TYPE) of INTEGER;

diva procedure PREFIX (A: in DYNAMIC_VECTOR;

GIVEN_LOC: in RANGE_TYPE;

ANS: out INTEGER) is

-- ANS is assigned the result of applying F to A(A'FIRST..GIVEN_LOC).

L, R: INTEGER;

BASE: INTEGER := O;

function F (X, Y: in INTEGER) return INTEGER is

begin -- F

return (X + Y);

end F;

begin -- PREFIX

if A'LENGTH = I then

if A'FIRST <- GIVEN_LOC then

ANS := A(A'FIRST);

else

ANS := BASE;

end if;

else

PREFIX (A'INITIAL, GIVEN_LOC, L);

PREFIX (A'FINAL, GIVEN_LOC, R);

ANS := F (L, R);
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end if ;

end PKEFII;

begin -- USE_PREFIX

OET (e) ;

PUT ("The length of the vector is ");

PUT (g, 1); NEW_LINE;

declare

subtype SUBRANGE is INTEGER range 1..N;

type VECTOR is array(SUBRANGE) of INTEGER;

X: VECTOR;

ANSWER: INTEGER;

procedure D0_PREFIX is

task type WOrKER_TYPE is

private

diva procedure MY_PREFIX is new PREFIX (SUBRANGE, VECTOR);

end WORKER_TYPE;

WORKER: array[I: SUBRANGE] of WORKER_TYPE;

task body WORKER_TYPE is

MY_ANSWER: INTEGER;

package PAR_0D'r is nee PARALLEL_OUT;

use PAR_OUT;

begin

meet

MY_PREFIX (X, I, MY_ANSWER);

end meet;

PKINT ("The anseer received by WORKER["); PRINT(I);

PRINT ("] is "); PRINT(NY_ANSVER); PRINT_LINE;

end WORKER_TYPE;

begin -- D0_PREFIX

null; -- Activate the array of eorkers.

end DO_PREFIX;

begin -- declare block

for I in SUBRANGE loop

GET (X(I));

end loop;

PUT_LINE ("The vector is:");

for I in SUBRANGE loop

PUT (X(I), 1); NEW_LINE;
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end loop;

DO_PKEFIX;

end; -- declare block

end USE_PREFIX;

A.6 UPDATE

This section illustrates how a diva procedure can be used to assign values
to components of two dynamic vectors. This diva procedure could be used
in a program where A is the vector of health benefits paid to each worker

in a company, B is the vector of total benefits paid to each worker, and

FACTOR is a factor by which the health benefits will be increased. A similar
diva procedure could be used to maintain some other desired relationship
between the corresponding components of two or more vectors.

diva procedure UPDhTE (A: in out DYNAMIC_VECTOR;

B: in out DYNAMIC_VECTOR;

FACTOR: in FLOAT) is

-- Each component of A is increased by the factor FACTOR.

-- Each component of B is increased by the amount of the increase in

-- the corresponding component of A.

AMOUNT_0F_INCREASE: FLOAT;

begin

if A'LENGTH = 1 then

AMOUNT_OF_INCREASE :- A(A'FIRST) * FACTOR;

A(A'FIRST) := A(A'FIRST) * (I.0 + FACTOR);

B(A'FIRST) := B(A'FIRST) + AMOUNT_OF INCREASE;

else

UPDATE (A'INITIAL, B'INITIAL, FACTOR);

UPDATE (A'FINAL, B'FINAL, FACTOR);

end if;

end UPDATE;
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Appendix B

Syntax Summary

This appendix gives extended BNF for a generic diva procedure and for

the meet and multiway accept constructs. The syntax for instantiations of

generic diva procedures is the same as that for instantiating Ada generic

procedures, except for the use of the private part of a task specification

when appropriate. Other features of Adam, such as diva calls and one-

dimensional indexed task declarations, are minor variations of Ada syntax,

as explained earlier.

Nonterminals in the grammar with the prefix pure_ada_code refer to

pure Ada, with static semantic restrictions as explained in Chapter 2. Each

of the following nonterminals produces an identifier:

array_name

diva_ ins tant iat ion_name

entry_family_name

gener ic_div a_pro cedur e_name

simple_name

discret e_range_type_name

dynamic_parameter_name

entry_family_index_variable

range_type_mark

type_mark

All instances of range_type_mark within the same declaration of a diva

procedure must produce the same identifier. All instances of

generic_diva_procedure_name within the diva procedure P must produce the

identifier P.

Square brackets are not used as metasymbols, since they occur as lexical

units within Adam. The metasymbols used are as follows: { } denotes zero

or one instances of the item contained within, { }* denotes zero, one, or

more instances of the item contained within, { }+ denotes one or more

instances of the item contained within, and I denotes an alternative.
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gener ic _diva_procedur e _dec lar at ion

: :- GENERIC

TYPE range_type_mark IS RANGE < • ;

{ TYPE type_mark IS ARRAY ( range_type_mark ) OF type_mark ; }+

DIVA PROCEDURE generic_diva_procedure_nane

( dynamic_parameter_declaration { ; dynamic_parameter_declaration }*

{ ; non_dynamic_declarations } ) IS

{ pure_aria_code1 }

BEGIN

IF dynanic_paraneter_name ' LENGTH- I

THEN

{ pure_ada_code2 }

ELSE

generic_diva_procedure_nane

( dynanic_parameter_name ' INITIAL

{ , dynanic_parameter_naze ' INITIAL }*

{ , <identifier> }_ ) ;

generic_diva_procedure_name

( dynanic_parameter_name _ FINAL

{ , dynamic_parameter_name _ FINAL }*

{ , <identifier• }_ ) ;

{ pure_ada_code3 }

END IF ;

{ RETURN; }

END generic _diva_procedure_name ;

dynamic_paranet er_dec 1 ar at ion

::- dynamic_parmneter_name { , dynamic_parameter_name }* : mode type_mark

node

: :- IN J OUT J IN OUT

non_dynamic _decl arat ions

: : - in_parameter_declaration

; in_parameter_declaration }*

out _or_ in_out _parameter_declarat ion

( ; out_or in out_parameter_declaration }e

in_parameter_declarat ion

( ; in_parameter_declaration }e

; out_or_in_out _paranet er_declarat ion

{ ; out_or_in_out_parameter_declaration }e

in_parameter_declarat ion

:: - identifier_list : IN type_mark

identifier_list : IN range_type_mark
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out _or_ in_out _paramet er_declarat ion

: := identifier_list : OUT type_mark I

identifier_list : OUT range_type_mark

identifier_list : IN OUT type_mark [

identifier_list : IN OUT range_type_mark

identifier_list

::= <identifier> { , <identifier> }*

generic_diva_specification_declaration

::= GENERIC

TYPE type_mark IS RANGE < > ;

{ TYPE type_mark IS ARRAY ( range_type_mark ) OF type_mark ; }+

DIVA PROCEDURE generic_diva_procedure_name

( dynamic_parameter_declaration { ; dynamic_parameter_declaration }*

{ ; non_dynamic_declarations } ) ;

generic_diva_body_declaration

::= DIVA PROCEDURE generic_diva_procedure_name

( dynamic_parameter_declaration { ; dynamic_parameter_declaration }*

{ ; non_dynamic_declarations } ) IS

{ pure_ada_codel }

BEGIN

IF dynamic_parameter_name ' LENGTH - 1

THEN

{ pure_ada_code2 }

ELSE

generic_diva_procedure_name

( dynamic_parameter_name ' INITIAL

{ , dynamic_parameter_name ' INITIAL }*

{ , <identifier> }* ) ;

generic_diva_procedure_name

( dynamic_parameter_name ' FINAL

{ , dynamic_parameter_name ' FINAL }*

{ , <identifier> }* ) ;

{ pure_ada_code3 }

END IF ;

{ RETURN ; }

END generic_diva_procedure_name ;

meet_statement

::= MEET multivay_rendezvous_statements END MEET;

multieay_rendezvous_statements
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::- NULL ; J { diva_call_vithin_multiway_rendezvous }+

diva_ c al l_git hin_mult ivay_rendezvous

: := diva_instantiation_nane ( actual_parameter_list ) ;

actual_paraneter_list

::- { array_nane , J sinple_nane [-] . sinple_nane , }+

{ { simple_name , }_ simple_nane }

multiway_accept_statement

::= ACCEPT entry_family_naue [ entry_fanily_index_declaration 3

( paraneter_specification _ ; parameter_specification }* ) }

{ DO nultiway_rendezvous_statements END { entry_fanily_n_une } } ; J

ACCEPT entry_fanily_nane [ entry_family_index_declaration 3

{ ( parameter_specification { ; parameter_specification }* ) } ;

entry family_index_declaration

::- entry_fanilyindex_variable : discrete_range_type_name

parameter_specification

::- simple_name { . sinple_name }* : node type_mark
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